

Australian Government FR Algorithm Performance Testing

International Face Performance Conference 2018

Chris Malec

Dana Michalski, Martyn Hole

Biometrics at DST Group: Overview

- Small, multidisciplinary team, est.
 2000
 - Sits within the Intelligence Analytics
 Branch of National Security &
 Intelligence, Surveillance and
 Reconnaissance Division
- Focus on facial recognition
 - Main partners: intelligence, law enforcement, and border security agencies
- Streams of work
 - Technical and human factors
 - Evaluation, trials, development and applied research

Biometrics Group Overview

Science and Technology for Safeguarding Australia

DEAKIN

Australian National University

Images: agd.gov.au, afp.gov.au, acic.gov.au, defence.gov.au, defence.gov.au, border.gov.au, nist.gov, flags.com, rcmp-grc.gc.ca, gov.uk, adelaide.edu.au, unsw.edu.au, cognitec.com, nec.com, idemia.com, dermalog.com, swordfish.com.au, uncw.edu, ucl.acl.uk, ecu.edu.au, dstl.gov.uk, dsta.gov.sg, dhs.gov, met.police.uk, dst.defence.gov.au, nyinorge.no, fbi.gov

Cascading Algorithms

Cascading Algorithms

Science and Technology for Safeguarding Australia

Cascading Algorithms

- How we assessed the performance:
 - 100k mated probes
 - 100k non-mated probes
 - Gallery = 15M
 - Only 1 image per id in gallery
 - Top 1000 returned by primary algorithm
 - Up to top 10 returned by secondary algorithm

Cascading Algorithms

Baseline Performance

Normalisation

$$z = \frac{x - \mu}{\sigma}$$

 μ = Mean

 σ = Standard deviation

 Z-score normalises the scores using the distribution scores of each probe against the gallery

Normalisation

Child Identification Program

- Assessment of current performance
- Impact on operational systems
- Investigate ways to improve performance

FMR for Children at each Age & Age Variation Based on FMR=0.001 set using Images of Adults

Age Variation (Years)

		0	1	2	3	4	5	6	7	8	9	10
Child In Image Pair (Years)	0	0.1164	0.0266	0.0111	0.0048	0.0028	0.0019	0.0009	0.0004	0.0002	0.0002	0.0001
	1	0.0867	0.0465	0.0218	0.0158	0.0088	0.0052	0.0026	0.0015	0.0009	0.0004	0.0003
	2	0.0508	0.0305	0.0264	0.0200	0.0104	0.0062	0.0034	0.0020	0.0011	0.0006	0.0003
	3	0.0325	0.0329	0.0277	0.0174	0.0094	0.0060	0.0035	0.0023	0.0013	0.0005	0.0002
	4	0.0303	0.0279	0.0199	0.0138	0.0081	0.0055	0.0034	0.0019	0.0008	0.0003	0.0001
	5	0.0221	0.0225	0.0149	0.0108	0.0070	0.0049	0.0027	0.0013	0.0005	0.0002	0.0001
	6	0.0235	0.0155	0.0115	0.0079	0.0056	0.0036	0.0019	0.0007	0.0003	0.0001	0.0001
	7	0.0156	0.0138	0.0092	0.0070	0.0041	0.0025	0.0011	0.0006	0.0003	0.0001	0.0001
	8	0.0142	0.0104	0.0066	0.0051	0.0026	0.0015	0.0006	0.0003	0.0001	0.0002	0.0001
	9	0.0100	0.0078	0.0038	0.0036	0.0013	0.0008	0.0004	0.0002	0.0001	0.0001	0.0001
o f O	10	0.0063	0.0051	0.0025	0.0015	0.0008	0.0005	0.0003	0.0001	0.0001	0.0001	0.0001
Age (11	0.0040	0.0032	0.0023	0.0011	0.0006	0.0004	0.0002	0.0002	0.0001	0.0001	0.0001
	12	0.0039	0.0019	0.0014	0.0006	0.0005	0.0003	0.0002	0.0002	0.0001	0.0001	0.0001
Youngest	13	0.0015	0.0011	0.0008	0.0008	0.0004	0.0003	0.0002	0.0002	0.0001	0.0001	0.0001
our	14	0.0011	0.0014	0.0007	0.0005	0.0004	0.0003	0.0002	0.0002	0.0002	0.0001	0.0001
>	15	0.0009	0.0010	0.0005	0.0004	0.0003	0.0003	0.0002	0.0002	0.0002	0.0001	0.0001
	16	0.0007	0.0006	0.0005	0.0004	0.0003	0.0003	0.0002	0.0002	0.0001	0.0001	0.0001
	17	0.0004	0.0004	0.0005	0.0004	0.0003	0.0002	0.0002	0.0002	0.0001	0.0001	0.0002

Worst Performance
Midpoint
Best Performance

FNMR for Children at each Age & Age Variation Based on FMR=0.001 set using Images of Adults

Age Variation (Years)

		0	1	2	3	4	5	6	7	8	9	10
(Years)	0	0.344	0.477	0.568	0.652	0.704	0.731	0.783	0.837	0.897	0.933	0.951
	1	0.052	0.119	0.166	0.248	0.287	0.335	0.418	0.497	0.590	0.698	0.768
	2	0.034	0.041	0.100	0.134	0.183	0.205	0.266	0.324	0.417	0.553	0.662
	3	0.050	0.053	0.073	0.106	0.124	0.155	0.200	0.266	0.361	0.505	0.615
	4	0.028	0.051	0.065	0.082	0.096	0.118	0.168	0.237	0.360	0.505	0.599
Pair	5	0.033	0.048	0.049	0.069	0.076	0.101	0.149	0.224	0.361	0.476	0.561
Child In Image	6	0.029	0.031	0.033	0.048	0.069	0.092	0.151	0.232	0.360	0.453	0.525
	7	0.032	0.023	0.020	0.046	0.065	0.093	0.160	0.249	0.337	0.412	0.456
	8	0.024	0.013	0.033	0.046	0.070	0.105	0.174	0.242	0.312	0.369	0.422
	9	0.008	0.011	0.038	0.054	0.084	0.118	0.172	0.227	0.273	0.328	0.370
of C	10	0.015	0.012	0.028	0.052	0.089	0.119	0.166	0.199	0.240	0.284	0.325
Age (11	0.005	0.014	0.024	0.076	0.091	0.116	0.143	0.187	0.219	0.260	0.286
	12	0.025	0.020	0.037	0.056	0.076	0.093	0.121	0.151	0.187	0.217	0.254
Youngest	13	0.008	0.021	0.038	0.051	0.061	0.070	0.098	0.116	0.141	0.167	0.202
, our	14	0.011	0.012	0.020	0.036	0.043	0.055	0.070	0.085	0.106	0.126	0.152
>	15	0.005	0.011	0.013	0.026	0.034	0.043	0.056	0.069	0.083	0.101	0.129
	16	0.008	0.010	0.018	0.024	0.027	0.034	0.043	0.053	0.068	0.089	0.095
	17	0.009	0.006	0.011	0.018	0.023	0.028	0.037	0.043	0.057	0.069	0.088

Worst Performance
Midpoint
Best Performance

Threshold Variation

FNMR when FMR=0.001 for each Age & Age Variation

Age Variation (Years)

	0	1	2	3	4	5	6	7	8	9	10
0	0.736	0.752	0.756	0.782	0.785	0.785	0.778	0.782	0.833	0.846	0.848
1	0.335	0.397	0.420	0.510	0.511	0.504	0.519	0.541	0.576	0.610	0.645
2	0.278	0.216	0.316	0.348	0.375	0.361	0.372	0.392	0.424	0.499	0.541
3	0.202	0.186	0.270	0.313	0.276	0.273	0.300	0.341	0.388	0.441	0.473
4	0.167	0.195	0.197	0.224	0.210	0.223	0.247	0.280	0.346	0.389	0.415
5	0.128	0.160	0.172	0.163	0.164	0.183	0.208	0.244	0.308	0.324	0.352
6	0.138	0.098	0.107	0.118	0.143	0.154	0.189	0.211	0.267	0.280	0.317
7	0.114	0.109	0.063	0.129	0.117	0.130	0.167	0.202	0.213	0.236	0.238
8	0.048	0.054	0.075	0.085	0.105	0.123	0.148	0.174	0.190	0.206	0.211
9	0.025	0.038	0.053	0.079	0.095	0.106	0.126	0.141	0.155	0.175	0.179
10	0.041	0.033	0.041	0.064	0.082	0.091	0.111	0.110	0.123	0.136	0.157
11	0.012	0.027	0.027	0.077	0.074	0.078	0.085	0.104	0.108	0.126	0.134
12	0.045	0.028	0.038	0.038	0.052	0.059	0.069	0.082	0.094	0.103	0.119
13	0.008	0.021	0.031	0.039	0.040	0.041	0.056	0.065	0.066	0.073	0.095
14	0.011	0.012	0.019	0.024	0.026	0.032	0.037	0.041	0.049	0.057	0.069
15	0.005	0.011	0.008	0.018	0.020	0.024	0.029	0.035	0.041	0.046	0.050
16	0.008	0.009	0.011	0.014	0.015	0.017	0.021	0.022	0.027	0.034	0.031
17	0.005	0.005	0.006	0.012	0.011	0.013	0.018	0.018	0.024	0.028	0.031

Youngest Age of Child in Image Pair (Years)

Worst Performance
Midpoint
Best Performance

Child Identification Program

Child Identification Program

Summary

- Collaborative approach across Australian
 Government has proved valuable
- Thank you to everyone involved:
 - Other Government agencies
 - Vendors